Naruto-Dreams
Вы хотите отреагировать на этот пост ? Создайте аккаунт всего в несколько кликов или войдите на форум.


 
ФорумПоследние изображенияПоискРегистрацияВход

 

 Флуд.. ;D

Перейти вниз 
+20
Obito
Sasuke
Какаши
Учиха Саске
Хьюга Нэджи
Naruto512
Хидан
Kakashi Hatake
ыфв
Uchiha Mark
El
Neji
Deidaraыы
Ino Yamanaka
Konan
Uchiha Itachi
Zabuza Momochi
Sodzo Hasui
d
Hana
Участников: 24
На страницу : 1, 2, 3 ... 12 ... 24  Следующий
АвторСообщение
Hana

Hana


Лев Петух
Сообщения : 276
Дата регистрации : 2009-06-18
Возраст : 30

Флуд.. ;D Empty
СообщениеТема: Флуд.. ;D   Флуд.. ;D Icon_minitimeЧт Июн 18, 2009 11:12 pm

.
Вернуться к началу Перейти вниз
d
Great Avenger
d


Козерог Обезьяна
Сообщения : 62
Дата регистрации : 2009-06-22
Возраст : 31

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 12:52 am

Буду первым xD.
Вернуться к началу Перейти вниз
Hana

Hana


Лев Петух
Сообщения : 276
Дата регистрации : 2009-06-18
Возраст : 30

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 1:01 am

^^
Вернуться к началу Перейти вниз
Sodzo Hasui
Admin
Sodzo Hasui


Рыба Собака
Сообщения : 703
Дата регистрации : 2009-06-18
Возраст : 30
Откуда : Москва
Ранг : Нукенин
Селение : Коноха

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 1:03 am

О, независимое мнение, Саске, у нас норм логотип форума и дизайн в целом?
Вернуться к началу Перейти вниз
https://naruto-dreams.forum2x2.ru
d
Great Avenger
d


Козерог Обезьяна
Сообщения : 62
Дата регистрации : 2009-06-22
Возраст : 31

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 1:10 am

Мнение критика,нахрен xD.
Логотип форума неплохой,даже скажу отличный.
Да и светлый дизайн очень к лицу,а то темные надоели.
Плохо то,что с плавным переходом,т.е. швом,не продуманно.
В целом: все просто чудненько.
Вернуться к началу Перейти вниз
Zabuza Momochi

Zabuza Momochi


Весы Петух
Сообщения : 187
Дата регистрации : 2009-06-22
Возраст : 30
Откуда : истумана

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 2:25 am

]
/floodstart
]
]
]
]
How a Jet Engine Operates
A turbojet engine is essentially a machine designed for the only purpose of producing high-velocity gases, which are discharged through the jet nozzle at the rear of the engine. The engine is started by rotating the compressor with a starter, then igniting the mixture of fuel and air in the combustion chamber3 with one or more igniters. When the engine has started and its compressor is rotating properly, the starter and the igniters are turned off. The engine will then run without further assisstance as long as fuel and air in the proper propor-tions continue to enter the combustion chamber.
The gases created by a fuel and air mixture burning under normal atmospheric pressure do not expand enough to do useful work. Air under pressure must be mixed with the fuel before the gases produced by combustion can be successfully employed to make a turbojet ope-rate. The more air an engine can compress and use, the greater is the power or thrust it can produce.
In a jet engine the fuel and air mixture is compressed by means of a centrifugal compressor. The power necessary to drive the compressor in a turbojet engine is very high. To indicate how much power is absor¬bed by the compressor of a moderately large turbojet, let us assume that we have an engine that produces 10,000 pounds of thrust for take-off. In this engine, the turbine has to produce approximately 35,000 shaft horsepower4 to drive the compressor when the engine is operating at full thrust. About three-quarters of the power generated inside a jet engine is used to drive the compressor. Only what is left over is available to produce the thrust needed to propel the airplane.
Single stage centrifugal compressors are practical for pressure ratios up to about 4:1. Higher pressures can be achieved, but at a decrease in efficiency. It is possible to obtain higher pressures by using more than one stage of compression.

Liquid Propellants
The energy developed in the rocket engine for propulsion purposes is derived from the thermochemical energy of the propellants. Their chemical reaction, called "combustion" is accompanied by the genera¬tion of large quantities of gases at high temperature. Since the fuels employed are hydrocarbons, the products of combustion usually con¬tain carbon dioxide (CO2), carbon monoxide (CO) and water (H2O) in the form of steam, as the principal constituents. The temperature attained by the reaction and the composition of the reaction products are influenced to a large extent by the mixture ratio1 of the propel¬lants. The pressure in the combustion chamber2 where the reaction takes place influences the completeness of the reaction. The higher the chamber pressure, the more complete the reaction. High chamber pressure gives improved performance; however, the improvement dec¬reases for valves of chamber pressure above approximately 300 psia.
The ideal liquid rocket propellant is one that meets the following requirements:


The heat value4 per pound of propellant shou
1. ld be as high a
possible.
2. The density should be high to keep space requirements low.
3. The propellant should be easily stored and present no special
handling problems.
4. The corrosiveness of the propellant should be low.
5. The performance of the propellant combination should not
be greatly affected by temperature changes.
6. The ignition should be reliable and smooth.
7. The propellant should be stable for reasonable lengths of time.
8. The viscosity change with temperature change should be low
so that the pumping work at low temperatures will not be excessive.
None of the known liquid rocket propellants satisty all these requi¬rements.


The Temperature Problem


The problem which has become of increasing importance as the speeds of aircraft have become higher is that of temperature. The tem¬peratures associated with very high energies dissipated during re¬entry2 of a missile are frequently above the melting point of most materials. Even the temperatures associated with the leading edge3 of airplanes in supersonic flight are high enough to reduce severely4 the strengtn characteristics of the structural materials. Three methods have been used to overcome the temperature prob-
lem. To certam missile re-entry application, it is possible to construct
the body with a shielding of material that is able to absorb the heat
generated during the re-entry manoeuvre by merely melting or burning
away the smelding , leaving the main structure undamaged. In cases
where such an approach would be unsatisfactory, efforts have been
made to combat the temperature by utilizing cooling systems, such as
feeding water under pressure through the leading edge and absorbing
the excess heat by converting it to steam. At lower speeds, tem¬
perature-resistant materials, such as stainless steel or titanium or
even certain aluminum alloys, have proved a very satisfactory ap¬
proach. ■


STOLs and VTOLs
STOL stands for short take-off and landing. STOL looks like conventional aircraft, but depends on powerful engines and stabili¬zation devices for landing and take-off. These might include large retractable flaps1 to increase wing area at low speeds and to deflect the airstream downward for increased lift.
Being faster than helicopters but requiring more space to land STOLs might be used in intercity operations between suburban airports.
VTOL stands for vertical take-off and landing. It should be noted that VTOL craft can also operate in the STOL mode where landing space is available. All VTOLs pose difficult technical problems. While an ordinary aircraft can develop lift slowly by increasing speed along a runway3, the VTOL must take off without this kind of help. It seeks all its initial lift without any forward speed. This requires a great amount of lifting power, which is likely to be needed only for take-off and landing. The result is lower payload, higher costs, and shorter range.
Operating costs are improving, but are still higher than those of conventional aircraft. Nevertheless4, there is no question that there is a place for VTOLs — assuming a satisfactory design can be found.
A number of different kinds of VTOL have been built or are under study.
A model of the strange-looking ADAM II has already been built and is being tested. ADAM stands for Air Deflection and Modulation. Turbofan engines5 will be located right in the wings and nose. To obtain upward thrust , the fixed-wing design diverts7 the airflow downw¬ard through a series of louvers8 or slats. ADAM is planned as a high-sonic craft, which may bring it into the 600-mph class. Finally, work is proceeding9 on several supersonic, jet-driven
VTOLs. These, as well as ADAM, are the kind of high-performance
craft, that must sacrifice10 payload and economy of operation to obtain
this high performance. Therefore now they are of more interest to the
military than to commercial operators. The future, however, may see
even more novel designs.

Rocket Propulsion Fundamentals
The chemical rocket engine is not dependent upon air as its oxidizer source and therefore can operate outside the earth's atmosphere to propel space vehicles. This is an advantage over other types of jet propulsion engines1. A rocket engine functions perfectly in vacuum or near-vacuum conditions since it does not have to overcome the drag that is created in atmospheric conditions.
The rocket engine differs also from other types of jet propulsion in that its thrust depends entirely upon the effective velocity of the exhaust and does not depend upon a momentum difference2. Since its thrust depends only upon the effective jet velocity, it is not affected by the speed at which the vehicle travels if the propellant consump¬tion rate is constant. Thrust equations:
The thrust of a rocket engine is composed of the sum of two terms: momentum thrust3 and pressure thrust4. The momentum thrust is simply the change of momentum which results from the acceleration of the propellant particles. The equation for momentum thrust is often called the simplified thrust equation because it assumes "comp¬lete expansion" of the exhaust gases in the nozzle5. In other words it assumes that the gases have expanded to the point where the nozzle pressure is the same as the pressure surrounding the rocket nozzle. The equation for the momentum thrust is:
Th = G~Ve, where Th — momentum thrust in lbs;
G— weight rate of flow of propellant in lbs. per second; g— acceleration due to gravity (32.2 ft/sec2); Ve — velocity of gases at nozzle exit in ft. per second.






Combustion-Driven MHD1 Generator
The combustion-driven MHD generator is remarkably simple — nothing more than a relatively low-pressure rocket, a combustion cham¬ber attached2 to a rather long nozzle, with the whole assembly inserted inside a magnet. And because of the ability of the generator to handle very-high-temperature gases, a MHD powerplant will run at effi¬ciencies which may exceed 60%. Its high efficiency could drastically reduce — even eliminate — thermal pollution3 of lakes and rivers. In wide use, it could also significantly reduce sulfur dioxide pollution of the atmosphere, and turn out sulfuric and nitric acids4 as bypro¬ducts. The performance of MHD, moreover, improves with increased generator size.
But the conceptual simplicity of MHD does not, in itself, cinch5 its application. In many ways, the situation is closely analogous to that of the rocket engine, which the generator so closely resembles6.
Ability to utilize a very-high-temperature, high-energy heat source distinguishes7 the gaseous MHD generator as a power source. In MHD, the power-production process takes place throughout the gas volume. The gas container — the MHD channel — can be cooled, and so can operate at much lower temperature than the generating gas. Consequently, in principle, an energy source at any temperature may be employed. Ability to operate at high temperature means high thermodynamic efficiency and large power density. As a practical matter, however, the gaseous working fluids of primary interest come from the energy of chemical combustion and the solid-core nuclear reactor. For combus¬tion-driven MHD, this means a maximum gas temperature below about 5200 F, except in special instances involving very high energy fuels. For the nuclear heat source, maximum attainable temperatures are much lower, well below 3500 F for advanced systems, and below 2000 F for more conventional systems.
Finally, engineers confront a multitude of problems related to the other equipment for a complete powerplant. These include the develop¬ment of the regenerative high-temperature heat exchangers to preheat the combustion air to 2000—3000 F.





Information Theory, Codes and Messages
The general problem of transmitting and interpreting (decoding) messages is considered by information theory, a close relative1 of thermodynamics, which, a little by design and a little by chance, uses the statistical concept of entropy as a starting point.
In the general communication problem considered by Claude Shannon, the inventor of information theory, the following basic elements are introduced: A message
A transmitter: the thing that is sending the message A receiver: the instrument that reads and decodes the message A channel: medium through which the message is transmitted A code: set of symbols used to write the message Noise: an undesirable signal that interferes with the whole process and cannot be eliminated
A simple example is provided by the telegraph. There is a code given by a sequence of lines, dots2, and periods of silence; a transmitter, which serves to send the message in the form of an electromagnetic signal; a channel — the air; a receiver, which includes the operator who decodes the message. Noise is distributed throughout: there may be electrical discharges interfering with the real signal, errors caused by the operator, etc. In devising3 his dot-and-dash code4 Morse fol¬lowed the principle of using the shortest symbols — the fastest to transmit — for the most common letters. This method is still used in more sophisticated codes.
]
]
]
]
]
/floodstop
]
Вернуться к началу Перейти вниз
Hana

Hana


Лев Петух
Сообщения : 276
Дата регистрации : 2009-06-18
Возраст : 30

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 2:56 am

Кому нечего делать,гоу рекламить)
Вернуться к началу Перейти вниз
Uchiha Itachi

Uchiha Itachi


Сообщения : 193
Дата регистрации : 2009-06-22
Ранг : Нукенин
Селение : Коноха

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 3:16 am

И с тех пор, здесь больше не кто не чего не писал..=)
Вернуться к началу Перейти вниз
Hana

Hana


Лев Петух
Сообщения : 276
Дата регистрации : 2009-06-18
Возраст : 30

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 3:17 am

*Никто, *ничего ))
Вернуться к началу Перейти вниз
Uchiha Itachi

Uchiha Itachi


Сообщения : 193
Дата регистрации : 2009-06-22
Ранг : Нукенин
Селение : Коноха

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 3:20 am

study Пошёл учить русский.)
Вернуться к началу Перейти вниз
Zabuza Momochi

Zabuza Momochi


Весы Петух
Сообщения : 187
Дата регистрации : 2009-06-22
Возраст : 30
Откуда : истумана

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 3:29 am

]
/floodstart
]
]
]
]
]
Radiation
Radiation is the process by which waves are generated. If we con¬nect an ac source to one end of an electrical transmission line (say, a pair of wires or coaxial conductors) we expect an electromagnetic wave to travel down the line. Similarly, if, as in the first Figure, we move a plunger2 back and forth in an air-filled tube, we expect an acoustic wave to travel down the tube.
Thus, we commonly associate the radiation of waves with oscilla¬ting sources. The vibrating cone of a loudspeaker radiates acoustic (sound) waves. The oscillating current in a radio or television trans¬mitting antenna radiates electromagnetic waves. An oscillating electric or magnetic dipole radiates plane-polarized waves3. A rotating electric or magnetic dipole radiates circularly polarized waves.
Radiation is always associated with motion, but it is not always associated with changing motion. Imagine some sort of fixed device moving along a dispersive medium*. In the Figure below this is illustra¬ted as a "guide" moving along a thin rod and displacing the rod as it moves. Such a moving device generates a wave in the dispersive medium. The frequency of the wave is such that the phase velocity v of the wave matches5 the velocity v of the moving device. If the group velocity is less than the phase velocity, the wave that is generated trails behind the moving device. If the group velocity is greater than the phase velocity, the wave rushes out ahead7 of the moving device. Thus, an object that moves in a straight line at a constant velocity can radiate waves if the velocity of motion is equal to the phase velocity of the waves that are generated. This can occur in a linear dispersive medium, as we have noted above. It can also occur in the case of an object moving through a space in which plane waves8 can travel.

Antennas and Diffraction
The Figure represents a beam of light emerging from a laser. As the beam travels, it widens and the surfaces of constant phase become spherical. The beam then passes through a convex lens1 made of a ma¬terial in which light travels more slowly than in air. It takes a longer time for the waves to go through the centre of the lens than through the edge of the lens. The effect of the lens is to produce a plane wave2 over the area of the lens. When the light emerges from the lens, the wavefront, or surface of constant phase, is plane.
The next example represents a type of microwave antenna. A mic¬rowave source, such as the end of a waveguide3, is located at the focusof a parabolic (really, a paraboloidal) reflector. After reflection, the phase front4 of the wave is plane over the aperture5 of the reflector.
The light emerging from the lens of the first Figure does not tra¬vel forever6 in a beam with the diameter of the lens. The microwaves from the parabolic reflector do not travel forever in a beam the dia¬meter of the reflector. How strong is the wave at a great distance from the lens or the reflector?
A particular form of this question is posed in the Figure at the'; bottom of the text. We feed a power PT into an antenna that emits a plane wave over an area AT. We have another antenna a distance L away which picks up the power of a plane wave in an area AR and supplies this power PR to a receiver. What is the relation among PT, PR, AT, AR, and L? There is a very simple formula relating these quantities:
Computers and Mathematics
Today physicists and engineers have at their disposal two great tools: the computer and mathematics. By using the computer, a person who knows the physical laws governing the behavior of a particular device or a system can calculate the behavior of that device or system in particular cases even if he knows only a very little mathematics. Today the novice1 can obtain numerical results that lay beyond the reach of the most skilled mathematician in the days before the compu¬ter. What are we to say of the value of mathematics in today's world? What of the person with a practical interest, the person who wants to use mathematics?
Today the user of mathematics, the physicist or the engineer, need know very little mathematics in order to get particular numerical answers. Perhaps, he can even dispense with2 the complicated sort of functions that have been used in connection with configurations of matter. But a very little mathematics can give the physicist or engineer that is harder to come by through the use of the computer. That thing is insight3. The laws of conservation of mechanical energy and momen¬tum can be simply derived from Newton's laws of motion. The laws are simple, their application is universal. There is no need for compu¬ters, which can be reserved for more particular problems.

Electronic Components for Computers
The electronic digital computer is built primarily of electronic components, which are those devices whose operation is based on the phenomena of electronic and atomic action and the physical laws of electron movement. An electronic circuit is an interconnection of electronic components arranged to achieve a desired purpose or fun¬ction.
During the past two decades, the computer has grown from a fledg¬ling curiosity1 to an important tool in our society. At the same time, electronic circuit developments have advanced rapidly; they have had a profound2 effect on the computer. The computer has been signi¬ficantly increased in reliability and speed of operation, and also redu¬ced in size and cost. These four profound changes have been primarily the result of vastly improved electronic circuit technology.
Electronic vacuum tubes were used in the earliest computers. They were replaced by solid-state electronic devices3 toward the end of the 1950's. A solid-state component is a physical device whose ope¬ration depends on the control of electric or magnetic phenomena in solids; for example, a transistor, crystal diode, or ferrite core4. Solid-state circuits brought about the reliability and flexibility required by the more demanding applications of computers in industry. Pro¬bably the most important solid-state device used in computers is the semi-conductor, which is a solid-state element which contains proper¬ties between those of metal or good conductor, and those of a poor conductor, such as an insulator. Perhaps the best-known semi-conduc¬tor is the transistor.
The advances in electronic circuit technologies have resulted in changes of "orders of magnitude" where an order of magnitude is equal to a factor of ten.
The number of installed computers grew from 5000 in 1960 to appro¬ximately 80,000 in 1970. Also, the number of circuits employed per computer installation has significantly increased. The first computers using solid-state devices employed 20,000 circuits. Today computers using transistors may contain more than 100,000circuits. The trend is likely to continue; it has been made possible by the continued decrease in size, power dissipation, cost, and improved reliability of solid-state circuits. Note that what was used in a "high performance" computer in
1965 became commonly used in 1968. The speed of the logic circuits
is given in nanoseconds, 10~9 seconds.
Existing Satellite Communications Systems
In a satellite communications system, satellites in orbit provide links between terrestrial stations sending and receiving radio signals. An earth station transmits the signal to the satellite, which receives it, amplifies it and relays it to a receiving earth station. At the fre¬quencies involved, radio waves are propagated in straight lines, so that in order to perform its linking and relay functions, the satellite, must be 'visible'— that is, above the horizon — at both the sending and receiving earth stations during the transmission of the message.
There are at present two different types of systems by which satelli¬tes are so positioned: 'synchronous' and 'random orbit'. A satellite placed in orbit above the equator at an altitude of 22,300 miles (35,000 km) will orbit the Earth once every 24 hours. Since its speed is equal to that of the Earth's rotation, it will appear to hang1 motion¬less over a single spot on the Earth's surface. Such a satellite is called a synchronous satellite, and the orbit at 22,300 miles above the equa¬tor is known as 'the geostationary orbit'. A synchronous satellite is continuously visible over about one-third of the Earth (excluding extreme northern and southern latitudes2). Thus a system of three such satellites, properly positioned and linked, can provide coverage of the entire surface of the Earth, except for the arctic and antarctic regions.
A satellite in any orbit other than a synchronous orbit will be si¬multaneously visible to any given pair of earth stations for only a por¬tion of each day. In order to provide continuous communication bet-ween such stations, more than one satellite would be required, orbiting in such a way that when the first satellite disappeared over the horizon from one station, another had appeared and was visible to both sending and receiving earth stations. The number of such satellites required to provide continuous communication depends on the angle and alti-tude of the orbit. The number could be minimized if the spacing bet¬ween the satellites were precisely controlled (controlled-orbit system), but a somewhat3 larger number with random spacings can achieve the same result (random-orbit system).
Since the synchronous satellite remains stationary with respect to any earth station, it is relatively simple to keep the antennas at thesending and receiving stations properly pointed at the satellite. Only small corrections for orbital errors are required. In a random-orbit system, the earth-station antenna must track the satellite across the sky. Moreover, if continuous communication is to be maintained, a second antenna must be in readiness at each earth station to pick up the following satellite as the first one disappears over the horizon.
At present, there are operating systems of both main types. Intel¬sat operates a synchronous system providing global coverage, with satellites positioned above the Atlantic, Pacific, and Indian Oceans. The Soviet Orbita system, used for space network domestic communica¬tions (including television distribution) within the USSR, is a random-orbit system, using eight satellites and providing continuous 24-hour communications. The satellites are spaced so that two of them are al¬ways over the Northern Hemisphere5; and the orbits are such that during the time when it is in operation, a satellite is at the apogee of its orbit. Its apparent motion with respect to the Earth's surface is slowest at this time and the tracking problem is minimized


]
]
]
]
/floodstop
]
Вернуться к началу Перейти вниз
Zabuza Momochi

Zabuza Momochi


Весы Петух
Сообщения : 187
Дата регистрации : 2009-06-22
Возраст : 30
Откуда : истумана

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 3:30 am

это хоть ктото читает?

а жаль - очень интересно на самом деле... если бы не было так нудно и на англиском...
Вернуться к началу Перейти вниз
Hana

Hana


Лев Петух
Сообщения : 276
Дата регистрации : 2009-06-18
Возраст : 30

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 3:43 am

lol!
Вернуться к началу Перейти вниз
Zabuza Momochi

Zabuza Momochi


Весы Петух
Сообщения : 187
Дата регистрации : 2009-06-22
Возраст : 30
Откуда : истумана

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 3:53 am

а че лол...
у меня 80 000 знаков этого текста - и мне весь нужно перевести - вот таким вот образом например -

How a Jet Engine Operates
A turbojet engine is essentially a machine designed for the only purpose of producing high-velocity gases, which are discharged through the jet nozzle at the rear of the engine. The engine is started by rotating the compressor with a starter, then igniting the mixture of fuel and air in the combustion chamber3 with one or more igniters. When the engine has started and its compressor is rotating properly, the starter and the igniters are turned off. The engine will then run without further assisstance as long as fuel and air in the proper propor-tions continue to enter the combustion chamber.
The gases created by a fuel and air mixture burning under normal atmospheric pressure do not expand enough to do useful work. Air under pressure must be mixed with the fuel before the gases produced by combustion can be successfully employed to make a turbojet ope-rate. The more air an engine can compress and use, the greater is the power or thrust it can produce.
In a jet engine the fuel and air mixture is compressed by means of a centrifugal compressor. The power necessary to drive the compressor in a turbojet engine is very high. To indicate how much power is absor¬bed by the compressor of a moderately large turbojet, let us assume that we have an engine that produces 10,000 pounds of thrust for take-off. In this engine, the turbine has to produce approximately 35,000 shaft horsepower4 to drive the compressor when the engine is operating at full thrust. About three-quarters of the power generated inside a jet engine is used to drive the compressor. Only what is left over is available to produce the thrust needed to propel the airplane.
Single stage centrifugal compressors are practical for pressure ratios up to about 4:1. Higher pressures can be achieved, but at a decrease in efficiency. It is possible to obtain higher pressures by using more than one stage of compression.




Как работает реактивный двигатель




Турбореактивный двигатель, по существу – устройство, разработанное для производства высокоскоростных газов, которые нагнетаются через форсунку в задней части двигателя. Двигатель заводится вращением компрессора с помощью стартера, потом сжигается смесь топлива и воздуха в камере сгорания с одним или более воспламенителей. Когда двигатель заведен, и его компрессор вращается должным образом, стартер и воспламенители выключаются. Двигатель будет работать без дальнейшей поддержки, пока топливо и воздух в нужных пропорциях поступают в камеру сгорания.

Газы, созданные сжиганием смеси топлива и воздуха, при нормальном атмосферном давлении не расширяются настолько, чтобы выполнять полезную работу. Воздух под давлением должен быть смешан с топливом до того как газы, созданные путем возгорания, могут быть успешно использованы, чтобы турбореактивный двигатель начал свое функционирование. Чем больше двигатель может сжать воздуха, тем больше мощности и тяги он может произвести.

В турбореактивном двигателе топливо и воздух сжимаются посредством центробежного компрессора. Мощность, необходимая для того, чтобы привести компрессор в двигателе в действие, очень велика. Чтобы определить, сколько мощности будет поглощено компрессором среднестатистического большого турбореактивного самолета, давайте предположим, что у нас есть двигатель, производящий 10000 фунтов тяги для взлета. В этом двигателе турбина должна произвести приблизительно 35000 валовых лошадиных сил, чтобы завести компрессор, когда двигатель работает на полную мощность. Около ¾ мощности сгенерированной в двигателе уходит на включение компрессора. И лишь оставшаяся часть способна производить то необходимое для движения самолета количество тяги.

Центробежный компрессор единственной фазы практичен для давления, пропорции которого доходят вплоть до 4:1. Высокие давления достижимы при условии уменьшения эффективности. Так же можно получить высокие давления путем использования более одной фазы компрессора.
Вернуться к началу Перейти вниз
Hana

Hana


Лев Петух
Сообщения : 276
Дата регистрации : 2009-06-18
Возраст : 30

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 3:54 am

О_о"
Вернуться к началу Перейти вниз
Uchiha Itachi

Uchiha Itachi


Сообщения : 193
Дата регистрации : 2009-06-22
Ранг : Нукенин
Селение : Коноха

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 4:42 am

Это а сюжет есть) ?
Или игра по началу шиппудена ?
Вернуться к началу Перейти вниз
d
Great Avenger
d


Козерог Обезьяна
Сообщения : 62
Дата регистрации : 2009-06-22
Возраст : 31

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 4:54 am

Чего-то я не в теме.Что за "[Ame] "?
Вернуться к началу Перейти вниз
Sodzo Hasui
Admin
Sodzo Hasui


Рыба Собака
Сообщения : 703
Дата регистрации : 2009-06-18
Возраст : 30
Откуда : Москва
Ранг : Нукенин
Селение : Коноха

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 4:57 am

ну аме, деревня такая, к ней еще акацуки относятся, а Саске вроде акацук)))
Вернуться к началу Перейти вниз
https://naruto-dreams.forum2x2.ru
d
Great Avenger
d


Козерог Обезьяна
Сообщения : 62
Дата регистрации : 2009-06-22
Возраст : 31

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 5:00 am

Точняк..Совсем позабылся с этим Ото на старых ролках х).
А я всегда хотел жить в Аме..Домик себе там построить,деньгами обзавестись xD.
Вернуться к началу Перейти вниз
Hana

Hana


Лев Петух
Сообщения : 276
Дата регистрации : 2009-06-18
Возраст : 30

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 5:01 am

А если появится игрок Итачи,что тогда делать?)
Вернуться к началу Перейти вниз
d
Great Avenger
d


Козерог Обезьяна
Сообщения : 62
Дата регистрации : 2009-06-22
Возраст : 31

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 5:03 am

Эм..Пусть сам разбирается.Мне в Аме будет хорошо хD.
Вернуться к началу Перейти вниз
d
Great Avenger
d


Козерог Обезьяна
Сообщения : 62
Дата регистрации : 2009-06-22
Возраст : 31

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 5:08 am

Админы,у вас косяк в навигации форума.
Вместо ЧаВо - календарь
Вернуться к началу Перейти вниз
Hana

Hana


Лев Петух
Сообщения : 276
Дата регистрации : 2009-06-18
Возраст : 30

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 5:10 am

Это не я)
Вернуться к началу Перейти вниз
Uchiha Itachi

Uchiha Itachi


Сообщения : 193
Дата регистрации : 2009-06-22
Ранг : Нукенин
Селение : Коноха

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 5:11 am

=)
Тип такие пафосные что можете не отвечать на мой вопрос) ?
Вернуться к началу Перейти вниз
Sodzo Hasui
Admin
Sodzo Hasui


Рыба Собака
Сообщения : 703
Дата регистрации : 2009-06-18
Возраст : 30
Откуда : Москва
Ранг : Нукенин
Селение : Коноха

Флуд.. ;D Empty
СообщениеТема: Re: Флуд.. ;D   Флуд.. ;D Icon_minitimeПн Июн 22, 2009 5:11 am

у админов не бывает косяков, все продумано Very Happy
Вернуться к началу Перейти вниз
https://naruto-dreams.forum2x2.ru
 
Флуд.. ;D
Вернуться к началу 
Страница 1 из 24На страницу : 1, 2, 3 ... 12 ... 24  Следующий

Права доступа к этому форуму:Вы не можете отвечать на сообщения
Naruto-Dreams :: [Вне игры] :: Деревня скрытого флуда-
Перейти: